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Abstract
We investigate the nonlinear dynamics of a system of populations competing
for the same limited resource for the case where each of the populations adapts
its growth rate to the total number of individuals in all populations. We consider
regions of parameter space where chaotic motion of the Shilnikov kind exists
and present results for two characteristic values of the growth ratio adaptation
factor r∗: r∗ = −0.15 and 5. Negative r∗ can lead to vanishing of regions
of chaotic motion and to a stabilization of a fixed point of the studied model
system of differential equations. Positive r∗ lead to changes of the shape of
the bifurcation diagrams in comparison with the bifurcation diagrams for the
case without adaptation. For the case r∗ = 5 we observe transition to chaos by
period-doubling bifurcations, windows of periodic motion between the regions
of chaotic motion and a region of transient chaos after the last window of
periodic motion. The Lyapunov dimension for the chaotic attractors is close
to two and the Lyapunov spectrum has a structure which allows a topological
analysis of the attractors of the investigated system.

PACS numbers: 05.45.Ac, 05.45.-a, 87.23.Cc

1. Introduction

The mathematical modelling of systems of competing populations leads to understanding of
the characteristics of the process of evolution. The properties of the obtained equations are very
interesting from the point of view of the nonlinear dynamics [1–11]. Many of the mathematical
models of the population dynamics are based on the Lotka–Volterra equations [12–21]. In this
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paper we discuss an extension of the model of competing populations based on the generalized
Volterra equations

dNi (t)

dt
= riNi(t)

[
1 −

n∑
j=1

αijNj (t)

]
i = 1, 2, . . . , n (1)

where ri is the growth rate of the ith population, and the competition coefficients αij
characterize to what extent the j th species affects the growth rate of the ith species. Finally
Ni is the number of individuals of the ith population. If we set the competition coefficients αij
to zero we obtain a system of equations that describes a process of exponential growth. As the
number of individuals of the populations must be finite the Volterra equations contain terms
that describe the competition among the populations for the limited natural resources. Thus
the growth terms are compensated by the competition terms.

In the model (1) the growth rates and competition coefficients do not change. In the natural
systems we observe the phenomenon of adaptation. Our idea is to include this phenomenon
in the above-mentioned mathematical model and to investigate its dynamical consequences.
In [22] we have assumed that the competition coefficients and growth rates in the generalized
Volterra equations depend on the number of individuals of the populations in the following
way:

ri = r0
i

[
1 +

n∑
k=1

rikNk

]
αij = α0

ij

[
1 +

n∑
k=1

αijkNk

]
. (2)

rik and αijk are the growth rate adaptation factors and competition coefficient adaptation factors
of first order. Thus we obtain the classical model as a particular case when the adaptation factors
are zero. Moreover (2) is the simplest way to take into account the adaptation of the growth
rates and competition coefficients and to avoid an explicit introduction of a dependence on the
time. Substituting (2) into (1) we obtain

dNi
dt

= r0
i Ni

{
1 −

n∑
j=1

[α0
ij − rij ]Nj −

n∑
j=1

n∑
l=1

α0
ij [αijl + ril]NjNl

−
n∑
j=1

n∑
k=1

n∑
l=1

α0
ij rikαij lNjNkNl

}
. (3)

Equation (3) leads to many possibilities. For an example it contains as particular cases the
model of Gilpin [23, 24] and the model of low-dimensional replicator systems [25]. If r0

i

and α0
ij are functions of N1,2,3 then (3) contains as a particular case the Hastings–Powell

model [26, 27]. In this paper we shall discuss the competition and adaptation for the case

rik = r∗ αijk = α∗ (4)

corresponding to populations of different subkinds of the same kind of animal. We can easily
see that (4) leads to adaptation of each population with respect to the total number of individuals
of all populations. Introducing the parameters

r0
i =

n∑
j=1

κij r0
i α

0
ij = κij (5)

and taking into account (4), equation (3) is reduced to the system discussed in [28] plus
additional terms Ai due to the adaptation effects

dNi
dt

= Ni
n∑
j=1

κij (1 −Nj) + Ai (6)

Ai = r0
i Ni

{
r∗

n∑
j=1

Nj − (α∗ + r∗)
n∑

j,l=1

α0
ijNjNl − α∗r∗

n∑
j,k,l=1

α0
ijNjNkNl

}
. (7)
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κij is

κij =
(
κ1 κ1 κ2

−κ1 −κ2 κ2

κ3 κ2 κ2

)
.

When κ1 = 0.5, κ2 = 0.1 and κ3 = µ we obtain as a particular case the case discussed
in [22]. If in addition α∗ = r∗ = 0 we obtain the case discussed in [28]. For the most cases
discussed in this paper we shall fix κ3 = 1.43 and change κ1 and κ2 in order to investigate the
regions of parameter space where the dynamics of the numbers of the population individuals
satisfies the theorem of Shilnikov [29–31]. In addition we set α∗ = 0; r∗ �= 0, i.e. we shall
investigate the influence of the adaptation of the growth rates of the populations on the system
dynamics.

This paper is organized as follows. In the following section we discuss the intervals of
the system parameters where two of the fixed points of (6) satisfy the theorem of Shilnikov
and the stability of these fixed points. In section 3 we discuss the system dynamics in
the above-mentioned regions of the parameters and analyse the power spectra, histograms
and autocorrelations. In section 4 we calculate the Lyapunov spectrum and the Lyapunov
dimension. Finally we show that the dissipativity of the system increases with increasing
growth ratio adaptation factor r∗.

2. Area of applicability of the theorem of Shilnikov

When the parameter κ3 = 1.43 and for the case without adaptation (α∗ = r∗ = 0) the
system (6) possesses a strange attractor [28]. It is a consequence of a theorem of Shilnikov
which states that if for the system

dx

dt
= ρx − ωy + P(x, y, z) (8a)

dy

dt
= ωx + ρy +Q(x, y, z) (8b)

dz

dt
= λz + R(x, y, z) (8c)

(P,Q,R are Cr functions (1 � r � ∞) vanishing together with their first derivative at
O = (0, 0, 0)) then an unstable orbit � exists, which is a homoclinic connection, and if

λ > −ρ > 0 (9)

then every neighbourhood of the orbit � contains a denumerable set of unstable periodic
solutions of saddle type.

Chaotic motion can be obtained by means of the above theorem if two appropriate fixed
points P1,2 exist. The first of them must be a saddle focus and has to satisfy the condition (9)
in some region of the space of the system parameters. The second point P2 must undergo a
supercritical Hopf bifurcation in this region of parameters. When α∗ = 0 and r∗ �= 0 we
obtain the same fixed points as in the case α∗ = r∗ = 0 plus the additional fixed points (N1 =
−(1 + r∗N2)/r

∗, N2: arbitrary, N3 = 0) and (N1,3: arbitrary, N2 = −(1 = r∗N3 + r∗N1)/r
∗).

Thus the saddle focus P1 and the point P2, where a Hopf bifurcation occurs, are the same as
the corresponding points for the case without adaptation. The coordinates of the saddle focus
are

N1 = −2κ2κ1 + κ2
1 − κ2

2

κ1(−κ2 + κ1)
N2 = κ1 + κ2

−κ2 + κ1
N3 = 0. (10)
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The coordinates of the fixed point P2 where the Hopf bifurcation arises are N1,2,3 = 1. The
adaptation of the growth rates does not influence the positions of the pointsP1,2 but it influences
their stability. The eigenvalues connected to the linear stability of the saddle focus P1 are

λ1 = (κ1 + 2r∗κ1 + r∗κ2)
[

− κ2
1 + 3κ1κ2 + 2κ2

2

+
√

−3κ4
1 + 2κ3

1κ2 + 13κ2
1κ

2
2 + 4κ1κ

3
2

]/
(2κ1(κ1 − κ2)) (11a)

λ2 = (κ1 + 2r∗κ1 + r∗κ2)
[

− κ2
1 + 3κ1κ2 + 2κ2

2

−
√

−3κ4
1 + 2κ3

1κ2 + 13κ2
1κ

2
2 + 4κ1κ

3
2

]/
(2κ1(κ1 − κ2)) (11b)

λ3 = κ2
[
2κ3

1 r
∗ + 2r∗κ2

1κ3 − 5r∗κ2
1κ2 + 3r∗κ1κ2κ3 + r∗κ2

2κ3 + κ3
1

−3κ2
1κ2 + κ2

1κ3 + κ1κ2κ3
]/
(κ2

1 (κ1 − κ2)). (11c)

The eigenvalues connected to the linear stability of the fixed point N1,2,3 = 1 are solutions of
the equation

λ3 + λ2κ1(1 + 3r∗)− λ[(κ2κ3 + 2κ2
2 − κ2

1 )(1 + 6r∗ + 9r∗2
)]

−[(3κ1κ
2
2 − κ2

1κ2 − κ2
2κ3 + κ1κ2κ3)(1 + 9r∗ + 27r∗2 + 27r∗3

)] = 0 (12)

for the case α∗ = 0.
The theorem of Shilnikov is satisfied in the parameter region where λ3 > 0, λ1,2 = ρ±ω

with negative real part ρ and imaginary ω. Finally we must have λ3 > −ρ. In this paper we
shall discuss the parameter region

κ3 > κ1 > κ2 > 0 (13)

that contains the parameters for the strange attractor discussed in [28].
Denoting δ = κ2/κ1 < 1, θ = κ3/κ1 > 1 and

C = 2r∗δ3 + (6r∗ + 2)δ2 + (4r∗ + 2)δ (14a)

D = 2r∗δ3 − (3r∗ + 4)δ2 + (9r∗ + 5)δ − 2r∗ − 1 (14b)

we obtain that when r∗ > 0 the area of validity of the Shilnikov theorem is where

0 < δ <

√
17 − 3

4
≈ 0.2807 (15)

and θ > 1.
The area of validity for negative r∗ is

− 1

2 + δ
< r∗ < 0 (16)

and the restrictions on δ and θ are the same as (15) and

θ > max

(
1,−D

C

)
. (17)

Below we discuss the region of possible negative values of r∗ as well as the region of
positive values of r∗ up to r∗ = 10. Thus we investigate the case of small and medial
adaptation of the growth rates of the populations.
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Figure 1. Bifurcation diagrams for N1, obtained by a section of the attractor by means of a
horizontal plane with coordinate equal to the z-coordinate of the fixed point P2. (a) r∗ = 0;
κ1 = 0.5; κ2 = 0.1. (b) r∗ = 5; κ2 = 0.1; κ3 = 1.43. (c) r∗ = 5; κ1 = 0.5; κ3 = 1.43. (d)
r∗ = 5; κ1 = 0.5; κ2 = 0.1. (e) r∗ = −0.15; κ1 = 0.5; κ3 = 1.43. (f ) r∗ = −0.19, κ1 = 0.5;
κ2 = 0.1.

3. Attractors, power spectra, histograms and autocorrelations

Figure 1 shows bifurcation diagrams connected to the fixed point P2. The starting point for
the calculated trajectories is (0.999, 0.999, 0.999) i.e. in the vicinity of the fixed point P2. The
plots are obtained by fixing the number of individuals N3 to the coordinate N∗

3 of the fixed
point P2. By means of the plane defined in such a way a section of the attractor is obtained.
Sequences of period-doubling and period-halving bifurcations as well as regions of dominant
periodic and chaotic motions can be identified in figures 1(a)–(f ). We note that the positive
r∗ change the shape of the Hopf bifurcation. This can be seen by a comparison of (a) and (d)
of figure 1. The bifurcation diagrams from r∗ = 5 to 10 have almost the same shape as the
bifurcation diagrams for r∗ = 5. The influence of r∗ on the system attractor, when all the other
parameters are fixed, can be seen in figure 2. Plot (a) shows that when r∗ has an appropriate
negative value the trajectory ends in a fixed point after some transition time. When r∗ = 0 the
attractor is a chaotic one and the increasing of r∗ leads to a transformation of the attractor to a
periodic one. We note that in figure 2(b) the period-three orbit (which is stable for the values of



7464 Z I Dimitrova and N K Vitanov

Figure 2. Influence of the parameter r∗ on the attractor of the system. κ1 = 0.5, κ2 = 0.1006,
κ3 = 1.43. (a) r∗ = −0.2. (b) r∗ = 0. (c) r∗ = 5.

the parameters corresponding to figure 2(c) is clearly visible despite the fact that the attractor
is a chaotic one. The decreasing of r∗ leads to a shift of the borders of the chaotic regions and
the borders of the periodic windows. In addition the number of windows of periodic motion
decreases with decreasing r∗.

Figure 3 presents the histograms for the number of individuals N1 of the first population.
The investigated time series consist of values sampled at equal time intervals. Thus the value
of ρ∗ shown in the figures is proportional to the time spent in some small interval around
this quantity value. When a periodic motion is present the histograms exhibit two peaks
per periodic component. These peaks correspond to the minimum and maximum number of
individuals for the corresponding component of the periodic motion. Because of these features
the histograms are the best tool for identifying the multiperiodic motions. The histograms in
figure 3(a), (b) and (d) show clearly the presence of period-three cycles for the corresponding
regions of system parameters.

Autocorrelations presented in figure 4 give information about the time evolution of the
system. The autocorrelation A∗ at lag l quantifies the distribution of the corresponding time
series points pk and pk+l , k = 1, 2, 3, . . . . If these points are evenly distributed in the plane
(pk, pk+l) the autocorrelation is zero and a non-negative autocorrelation reflects a tendency
of proportionality of pk and pk+l to each other. The autocorrelation for a periodic signal is
also periodic and for deterministic chaotic systems the autocorrelation decays exponentially
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Figure 3. Histograms for the time seriesN1 for the following values of the parameters. (a) κ1 = 0.5;
κ2 = 0.1; κ3 = 1.443; r∗ = 5. (b) κ1 = 0.5; κ2 = 0.1; κ3 = 1.5545; r∗ = 5. (c) κ1 = 0.5;
κ2 = 0.1; κ3 = 1.33; r∗ = 5. (d) κ1 = 0.5; κ2 = 0.1; κ3 = 1.56; r∗ = −0.15.

with increasing lag. The first zero of the autocorrelation function can be used as a time delay
when we perform a time-delay reconstruction of the system dynamics from measured time
series [32]. Figure 4(a) shows that the system dynamics is chaotic in the vicinity of the
corresponding system parameters; (b)–(d) correspond to periodic motions.

The power spectral density (power spectrum)

S∗(f ) = |H(f )|2 + |H(−f )|2 0 � f � ∞ (18)

(H(f ) is the function obtained by a Fourier transform of the investigated signal h(t)) visualizes
the dominant frequencies connected to the system dynamics and their shifting when the
system parameters change. If we use discrete sampled data with time interval ( between
the consecutive samples there exists a Nyquist critical frequency fc = 1/(2() (or fc = 1/2
if we measure the time in units (). For the time series discussed here it is appropriate to use
the power spectrum defined from 0 to fc [33].

The chaotic motion is associated with the band part of the spectrum. In figure 5 power
spectra are presented for several cases of system parameters: (b) and (c) show that the chaoticity
of the attractor decreases with decreasing r∗. When r∗ is negative the power spectral density
is concentrated in the low-frequency area. With increasing r∗ the power spectral density of
the higher frequencies increases too. Figure 6 shows a typical picture of the changes in the
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Figure 4. Autocorrelations for the time series for the following values of the variables. (a) κ1 =
0.467; κ2 = 0.1; κ3 = 1.43; r∗ = 5. (b) κ1 = 0.5; κ2 = 0.1; κ3 = 1.56; r∗ = −0.15. (c) κ1 = 0.5;
κ2 = 0.1; κ3 = 1.57; r∗ = −0.15. (d) κ1 = 0.5; κ2 = 0.1; κ3 = 1.69; r∗ = 5. One unit for (
corresponds to 20 integration steps.

attractor with increasing κ3 in the presence of adaptation. The changes in the system dynamics
with increasing control parameters κ1 and κ2 are presented in table 1.

4. Lyapunov exponents and Lyapunov dimension

The maximum Lyapunov exponent shows the following kind of motion in phase space: if λmax

is zero the motion is a stable limit cycle and for the chaotic motions 0 < λmax < ∞. We
compute λmax by means of the sum [34, 35]

S(m, ε, δt) = 1

N

N∑
n0=1

ln

[
1

Xn0

∑
s∈Xn0

|sn0+(n − sn+(n|
]

(19)

where in the embedding space Xn0 is the neighbourhood of diameter ε of the point sn0 and
δt is the time span. The sum over n0 is used in order to average out the fluctuations of the
expansion rates. S depends on the embedding dimension and on the size of the neighbourhood.
When S has a linear increase with identical slope for all embedding dimensions larger than
some m0, and for large enough values of ε, then this slope is an estimation of the maximum
Lyapunov exponent. Figure 7 shows several plots of the sum S. The slope of S is positive,
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Figure 5. Power spectra for the time series N1 for the following values of the parameters.
(a) κ1 = 0.5; κ2 = 0.1; κ3 = 1.5545; r∗ = 5. (b) κ1 = 0.5; κ2 = 0.1; κ3 = 1.42; r∗ = 5.
(c) κ1 = 0.5; κ2 = 0.1; κ3 = 1.43; r∗ = −0.15. (d) κ1 = 0.467; κ2 = 0.1; κ3 = 1.43; r∗ = 5.

which is an indicator for chaotic motion in these cases. We note that the maximum Lyapunov
exponents for figures 7(d) and (e) are λmax = 0.337 ± 0.040 and 0.345 ± 0.041 respectively.
These values are close to the values obtained by the calculation of the Lyapunov spectrum as
a function of Nδt (N , number of attractor points; δt , step of the numerical integration of the
system of ODEs) [36] (figure 8(a), curves marked with diamonds and triangles). We note that
the increase of κ3 in the interval of values around 1.43 leads to a considerable increase of L1

as well as to a smaller increase of the Lyapunov dimension (see figure 8(d)).
As we investigate a flow, one of the Lyapunov exponents must be zero. Indeed L2 in

figure 8(b) shows a tendency to reach zero with increasing N . The third Lyapunov exponent
L3 depends strongly on r∗: the decrease of R∗ leads to an increase of L3. Figure 8(d) shows
the Lyapunov dimension [37]

DL = k +

∑k
i=1 λi

|λk+1| . (20)

k is the maximum integer such that the sum of the k largest exponents is still non-negative.
DL is conjectured to coincide with the information dimension. The values of DL for the four
time series are slightly above two.
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Figure 6. Attractors for the case α∗ = 1.0, κ1 = 0.5, κ2 = 0.1, r∗ = 5. The values of κ3 are as
follows: (a) κ3 = 1.1; (b) κ3 = 1.38; (c) κ3 = 1.41; (d) κ3 = 1.443; (e) κ3 = 1.447; (f ) κ3 = 1.52;
(g) κ3 = 1.57; (h) κ3 = 1.62; (i) κ3 = 1.68. (Continued opposite.)

5. Discussion

In this paper we have investigated the influence of an adaptation of the growth rates on the
dynamics of the system of three populations competing for the same limited resource for
the simplest case where the growth rate adaptation factors have small values and are the
same for the three populations, and for parameter regions where the theorem of Shilnikov
is satisfied. The adaptation influences the borders of the above-mentioned regions as well
as leading to changes of the system dynamics. These changes increase with increasing r∗.
When κ1,2,3 are fixed and we change r∗ there are regions where unstable periodic orbits
can become stable. These orbits do not depend on the changes in r∗ i.e., when a period-
three orbit becomes stable it is always the same period-three orbit. In such cases the studied
system shows insensitivity to the adaptation of the growth ratios of the populations. The
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Figure 6. (Continued.)

changes of the value of r∗ lead to changes of the profile of the Hopf bifurcation and the
spectrum of the Lyapunov exponents is influenced too (especially the smallest Lyapunov
exponent).

The investigated system exhibits the phenomenon of pairwise competition (species 1
beats species 2, species 2 beats species 3 and species 3 beats species 1) that is of interest
not only for population dynamics but also in social sciences in connection to the theory
of voting, where one quite often can see a cycling preference behaviour of the voters.
Figure 9 shows that this phenomenon is present not only for the case of the periodic
solutions of the model equations but also in the case of chaotic behaviour of the number
of individuals. As a consequence of the pairwise competition the time is separated into
intervals of domination of one of the populations and transition intervals where a shifting
of the dominance to another population can be seen. We note that for the case discussed
in this paper, population 2 has a negative growth rate r0

2 = −0.5 while the growth rates
of the other two populations are positive. Nevertheless due to the adaptation population
2 manages to be dominant, i.e. to have the highest number of individuals, in some time
intervals. Thus the adaptation can be successful in compensating the negative consequences
of a smaller growth ratio of a population. We note also that there exist differences in the
pairwise competition behaviour for the case of a periodic solution of the model system of
ODEs without competition and the pairwise competition behaviour for the case of chaotic
solution of the model system of ODEs in the presence of adaptation of the growth rates. In
the former case the transition periods are relatively small in comparison with the periods
of a dominance of one of the populations, and the number of individuals of non-dominant
populations is almost zero. In the chaotic case the transition periods are longer and the
numbers of individuals of some of the non-dominant populations can be significantly different
from zero.
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Figure 7. The sums S used for calculation of the maximum Lyapunov exponent. (a) κ1 = 0.48;
κ2 = 0.1; κ3 = 1.43; r∗ = 5. (b) κ1 = 0.48; κ2 = 0.1; κ3 = 1.43; r∗ = −0.15. (c) κ1 = 0.5;
κ2 = 0.105; κ3 = 1.43; r∗ = 5. (d) κ1 = 0.5; κ2 = 0.1; κ3 = 1.43; r∗ = 5. (e) κ1 = 0.5;
κ2 = 0.1; κ3 = 1.43; r∗ = −0.15. (f ) κ1 = 0.5; κ2 = 0.1; κ3 = 1.58; r∗ = 5.
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Figure 8. Lyapunov exponents L1,2,3 and the Lyapunov dimension DL. The different cases for
the parameters are marked with the same symbols on each panel. The symbols are as follows:
circles, r∗ = 5, κ1 = 0.5, κ2 = 0.1005, κ3 = 1.43; squares, r∗ = −0.1, κ1 = 0.5, κ2 = 0.1005,
κ3 = 1.43; diamonds, r∗ = 5, κ1 = 0.5, κ2 = 0.1, κ3 = 1.43; triangles, r∗ = −0.1, κ1 = 0.5,
κ2 = 0.1, κ3 = 1.43; x–s, r∗ = 5, κ1 = 0.5, κ2 = 0.1, κ3 = 1.5.
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Table 1. Attracting manifolds for different control parameters.

κ1 = 0.5, κ3 = 1.43 κ2 = 0.1, κ3 = 1.43
r∗ = 5 r∗ = 5

κ2 κ1

�0.0716 �0.46
Fixed point P2 Fixed point P2

0.0716 0.46–0.467
Hopf bifurcation Transient chaos

0.0716–0.0978 0.467–0.505
Transition to chaos by Chaotic motion
period-doubling bifurcations

0.0978–0.1058 0.505–0.599
Chaotic motion Transition to a fixed point

by period-halving bifurcations

0.1059 >0.599
Period-three cycle Fixed point

0.1059–0.106
Transition to chaos by
period-doubling bifurcations

0.106–0.114
Chaotic motion

>0.114
Fixed point, a small
region of transient chaos
exists

The value of the Lyapunov dimension remains around two in the investigated parameter
intervals. Therefore, if the investigated system has appropriate dissipation properties it may
be eligible for a topological analysis. In order to investigate these properties we denote the
right-hand side of the system of equations (6) as F = (F1, F2, F3) with

Fi = Ni
n∑
j=1

κij (1 −Nj) + Ai. (21)

The divergence of F is equal to the sum of the local Lyapunov exponents [38,39] and if divF

is negative everywhere the corresponding system is dissipative. We have to calculate divF in
local coordinates around a point (N1,0, N2,0, N3,0). Neglecting all terms in the Taylor series
for the divergence of F containing the local coordinates and when the remaining term is not
very small

divF ≈ Tr

[(
∂Fi

∂Nj

)∣∣∣∣
(N1,0,N2,0,N3,0)

]
. (22)

For some systems of ODEs (22) does not depend on the coordinates Ni,0 (an example is the
system leading to the famous Lorentz attractor). This is not the case for the system studied
here. We obtain

divF ≈ κ1[1 −N1,0 −N2,0] + κ2[3 +N2,0 − 4N3,0] + κ3[1 −N1,0] = I1 (23)
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Figure 9. Pairwise competition among the populations. Solid curve: N1. Dotted curve: N2.
Dashed curve: N3. κ1 = 0.5; κ2 = 0.1; κ3 = 1.43; r∗ = 5.

for the case without adaptation and

divF ≈ I1 + r∗
[ 3∑
i=1

r0
i Ni,0 +

3∑
i,j=1

r0
i Nj,0 −

3∑
i,j,l=1

r0
i α

0
ijNj,0Nl,0

−
3∑

i,l=1

r0
i α

0
iiNi,0Nl,0 −

3∑
i,j=1

r0
i α

0
ijNi,0Nj,0

]
(24)

for the case with adaptation and α∗ = 0. Negative values of r∗ lead to positive divF and
thus to a worsening of the dissipative properties of the system. Positive values of r∗ lead to
negative values of divF . Thus the increasing adaptation of the population growth rates lead
to decreasing of the dimension of the chaotic attractors (the attractors become thinner). In
addition to this the largest Lyapunov exponents have small positive values in comparison with
the corresponding absolute values of the smallest Lyapunov exponents. These features of the
case of positive r∗ make the attractors of the investigated system eligible for analysis of their
topological properties, and for calculation of topological invariants such as linking and rotation
numbers [39]. This analysis will be a subject of future research.
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